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Whereas treatment of unprotected naphthalene-1-carboxylic
acid with alkyllithiums (RLi) affords 1,4-addition products, the
reaction with LTMP/Me3SiCl under in situ quench conditions
provides the arylsilane arising out from the substitution of lithi-
um 2-lithionaphthalene carboxylate with Me3SiCl. With the
Lochmann–Schlosser superbase (n-BuLi/t-BuOK), metalation
occurs preferentially in the position adjacent to CO2Li although
the peri and ortho, peri-dilithiated species are also formed.

Naphthalenes may undergo nucleophilic attack by organo-
lithium compounds,1 though dearomatisation of a naphthalene
ring requires additional activation by an electron-withdrawing
substituent. Naphthalenimines,2 naphthyloxazolines3 and very
bulky 2,6-di-tert-butylphenyl esters of naphthalenecarboxylic
acids4 all accept nucleophiles, losing aromaticity in one ring thus
providing valuable synthetic intermediates. The substituent
withdraws sufficient electron density to allow dearomatising nu-
cleophilic attack to take place.

We have reported that naphthalene-1-carboxylic acid (1) un-
dergoes predominantly conjugate addition with alkyllithiums
(RLi) at low temperature (�78 �C) in THF and leads to various
1,1,2-trisubstituted-1,2-dihydronaphthalenes 2 after quenching
with electrophiles (EX) (Scheme 1).5,6 Entry of the electrophile
proceeds exclusively from the more accessible opposite face to
that carrying the alkyl group.

Ortho- and peri-lithiations of naphthalenecarboxylic acid
derivatives have received so far less attention.7 The best peri-
lithiation-directing groups are those which coordinate to the in-
coming organolithium but do not acidify nearby protons, thereby
disfavoring directed ortho-lithiation. Typical peri-lithiation sub-
strates are therefore naphthalenes bearing electron-rich oxygen
or nitrogen-based substituents (e.g. OMe, NMe2, or CH2NMe2).

7

With the electron withdrawing tertiary amide substituent CO-
NR2—only group able to direct metalation in its adjacent posi-
tion in the naphthalene series—, the ortho-substituted product
becomes kinetically and thermodynamically favored.7,8

Although the CO2Li group does activate neighboring posi-
tions towards metalation, the effect remains fairly weak.9,10 This
enables regioflexibility as most other electronegative substitu-
ents outperform a competing carboxylate group by their superior
ortho-directing power.11,12 For instance, whereas 4-fluoro ben-
zoic acid is metalated preferentially in the position adjacent to
the carboxylate by treatment with s-BuLi, s-BuLi/TMEDA or
t-BuLi at��78 �C, a complete reversal in regioselectivity is ob-
served with LTMP at �50 �C.13

We decided to explore metalation conditions using sterically
hindered lithium amides (LDA and LTMP) and the Lochmann–
Schlosser base (n-butyllithium/t-BuOK)14,15 with the intention
of obtaining good chemo- and regiocontrol. It was not only of

theoretical, but also of practical interest to test conditions for se-
lective lithiation in ortho- or peri-position to the carboxylate,
since the amide counterpart (CONR2) is recalcitrant to hydroly-
sis.16,17 There is also a real lack of methods for transformation of
this group to other useful functionalities.

Acid 1 did not react upon treatment with LDA or LTMP
(2.2 equiv.) in THF followed by a D2O quench in the interval
of temperature �78 �C ! 0 �C [External quench (EQ)]. When
LTMP and chlorotrimethylsilane were premixed prior to the ad-
dition of 1 [in situ quench (ISQ) technique],18 2-(trimethylsilyl)-
naphthalene-1-carboxylic acid (4) was isolated in 65% yield.

Chlorotrimethylsilane is known to react slowly with bulky
bases such as lithium diisopropylamide (LDA) and LTMP,18,19

and with tert-butyllithium and n-butyllithium.20 Nevertheless,
s-BuLi and s-BuLi:TMEDA destroy Me3SiCl at �85 �C in
THF.11 The deprotonation of 1 by LTMP which produces a small
concentration of the trappable aryllithium 3, is sufficiently rapid
to make the process competitive in rate with reaction of the hin-
dered base with Me3SiCl. Deuterium oxide destroys the excess
LTMP under EQ conditions. Although triisopropyl borate is
known to be an effective in situ-trap in the presence of LTMP,21

it did not react under the previous ISQ conditions.
With the n-butyllithium/t-BuOK mixture (LICKOR), initial

results from our laboratories were interesting though not synthet-
ically useful. After much experimental manipulation, the best
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conditions involved forming the metalated species with LICK-
OR (4 equiv.) in THF at �78 �C (Scheme 2). The reaction was
allowed to warm up to �50 �C, quenched with deuterium oxide
(10 equiv.), and acidified at rt with 6M HCl until pH reached 1.
The deuterated products 2D-1, 8D-1 and 2D, 8D-1 were formed
in a 43:14:9 ratio, via the intermediacy of the organometallic
species 3, 5, and 6 (M = Li or K) resulting from the metalation
of the substrate in ortho, peri, and ortho-peri positions, respec-
tively.22 The nature of the cations M involved in these species
is not known with certainty. Both the structure of bases in solu-
tion as well as the nature of the actual reactive species have been
the objects of controversial discussions.23 To the best of our
knowledge, aromatic dianionic carboxylates of the type 6 have
never been reported so far.

With these optimized conditions in hand, we proceeded to
evaluate the scope of the process. Since the separation of the ma-
jor ortho-substituted products was readily accomplished by frac-
tional recrystallization, the reported method provides an easy ac-
cess to very simple 2-substituted naphthalene-1-carboxylic acids
(Table 1).24

Reaction with iodomethane and iodoethane gave the antici-
pated products (Entries 1 and 2). Quenching with such electro-
philes as hexachloroethane, 1,2-dibromotetrachloroethane, and
iodine provided the ortho-halogenated benzoic acids 7c–e (En-
tries 3–5). Addition of dimethyl disulfide afforded the methylsul-
fenylated derivative 7f (Entry 6). In each entry, the ortho, peri,
and ortho-peri product distribution was similar to that observed
with D2O (Scheme 2).

The results reported in this letter corroborate the recent con-
cept of how to achieve chemo or regiocontrol in hydrogen/metal

exchange processes through mechanism-based matching of sub-
stituents and reagents.11–13,15 Although the yields of 2-substitut-
ed naphthalene-1-carboxylic acids are modest, the present meth-
od is direct and does not require protection and deprotection of
the CO2H group. Extensions of the manipulation of carboxylic
functional group are ongoing in our laboratories and will be re-
ported upon in due course.
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Table 1. Synthesis of 2-substituted naphthalene-1-carboxylic
acids (7a–f)

CO2H

1

1) n-BuLi/t-BuOK (4 equiv)
THF, −78 °C      −50°C←

2) EX
3) H3O+

CO2H

7a-f

E

Entry EX E Product/%a mp/�C

1 MeI Me 7a (48) 125–127
2 EtI Et 7b (38) 118–119
3 C2Cl6 Cl 7c (29) 148–150
4 C2Br2Cl4 Br 7d (32) 136–139
5 I2 I 7e (30) 185–187
6 Me2S2 MeS 7f (34) 105–109

aIsolated (recrystallized) yields.
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